Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639909

RESUMO

Building envelope features (BEFs) have attracted more and more attention as they have a significant impact on flow structure and pollutant dispersion within street canyons. This paper conducted CFD numerical models validated by wind-tunnel experiments, to explore the effects of the BEFs on characteristics of the airflow and pollutant distribution inside a symmetric street canyon under perpendicular incoming flow. Three different BEFs (balconies, overhangs, and wing walls) and their locations and continuity/discontinuity structures were considered. For each canyon with various BEFs, the air exchange rate (ACH), airflow patterns, and pollutant distributions were evaluated and compared in detail. The results show that compared to the regular canyon, the BEFs will reduce the ACH of the canyon, but increase the disturbances (the proportion of ACH') inside the canyon. The BEFs on the leeward wall have the least influence on the in-canyon airflow and pollutant distributions, followed by that on the windward wall. Then when the BEFs are on both walls, the ventilation capacity of the canyon is weakened greatly, and the pollutant concentration in the ground center is increased significantly, especially near the windward side. Moreover, the discontinuity BEFs will weaken the effect of the continuity BEFs on the in-canyon flow and dispersion, specifically, the discontinuity BEFs reduced the region of high pollutant concentration distributions. These findings can help optimize the BEFs design to enhance ventilation and mitigate traffic pollution.

2.
Eur J Med Chem ; 271: 116399, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38640868

RESUMO

The structural optimization of B14, an antibacterial agent we previously obtained, has led to the discovery of a new class of CH2-linked quinolone-aminopyrimidine hybrids with potent anti-MRSA activities. Surprisingly, the hybrids lacking a C-6 fluoro atom at the quinolone nucleus showed equal or even stronger anti-MRSA activities than their corresponding 6-fluoro counterparts, despite the well-established structure-activity relationships (SARs) indicating that the 6-fluoro substituent enhances the antibacterial activity in conventional fluoroquinolone antibiotics. Moreover, these new hybrids, albeit structurally related to conventional fluoroquinolones, showed no cross-resistance with fluoroquinolone drugs. The most active compound, 15m, exhibited excellent activities with a MIC value of 0.39 µg/mL against both fluoroquinolone-sensitive strain USA500 and -resistant MRSA isolate Mu50. Further resistance development studies indicated MRSA is unlikely to acquire resistance against 15m. Moreover, 15m displayed favorable in vivo half-life and safety profiles. These findings suggest a rationale for further evolution of quinolone antibiotics with a high barrier to resistance.

3.
Small ; : e2312067, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563596

RESUMO

The open circuit voltage (VOC) losses at multiple interfaces within perovskite solar cells (PSCs) limit the improvements in power conversion efficiency (PCE). Herein, a tailored strategy is proposed to reduce the energy offset at both hetero-interfaces within PSCs to decrease the VOC losses. For the interface of perovskite and electron transport layer where exists a mass of defects, it uses the pyromellitic acid to serve as a molecular bridge, which reduces non-radiative recombination and energy level offset. For the interface of perovskite and hole transport layer, which includes a passivator of PEAI, the detrimental effect (negative shift of work function) of PEAI passivation and optimizing the interface energy level alignment are neutralized by incorporating (2-(4-(bis(4-methoxyphenyl)amino)phenyl)-1-cyanovinyl)phosphonic acid. Owing to synergistically reduced hetero-interface energy offset, the PSCs achieve a PCE of 25.13%, and the VOC is increased from 1.134 to 1.174 V. In addition, the resulting PSCs possess enhanced stability, the unencapsulated PSCs can maintain ≈96% and ≈97% of their initial PCE after 2000 h of aging under ambient conditions and 210 h under operation conditions.

4.
Inorg Chem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651290

RESUMO

Rare-earth metalloligand supported low-valent cobalt complexes were synthesized by utilizing a small-sized heptadentate phosphinomethylamine LsNH3 and a large-sized arene-anchored hexadentate phosphinomethylamine LlArH3 ligand precursors. The RE(III)-Co(-I)-N2 (RE = Sc, Lu, Y, Gd, La) complexes containing rare-earth metals including the smallest Sc and largest La were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The Co(-I)→RE(III) dative interactions were all polarized with major contributions from the 3dz2 orbital of the cobalt center, which was slightly affected by the identity of rare-earth metalloligands. The IR spectroscopic data and redox potentials obtained from cyclic voltammetry revealed that the electronic property of the Co(-I) center was finely tuned by the rare-earth metalloligand, which was revealed by variation of the ligand systems containing LsN, LmN, and LlAr. Unlike the direct alteration of the electronic property of metal center via an ancillary ligand, such a series of rare-earth metalloligand represents a smooth strategy to tune the electronic property of transition metals.

5.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666531

RESUMO

Digestive tract cancer is one of the most common types of cancers globally, with ~4.8 million new cases and 3.4 million cancer­associated deaths in 2018, accounting for 26% of cancer incidence and 35% of cancer­related deaths worldwide. S100 protein family is involved in regulating cancer cell proliferation, angiogenesis, epithelial­mesenchymal transition (EMT), metastasis, metabolism and immune microenvironment homeostasis. The critical role of S100 protein family in digestive tract cancer involves complicated mechanisms, such as cancer stemness remodeling, anaerobic glycolysis regulation, tumor­associated macrophage differentiation and EMT. The present study systematically reviewed published studies on the compositions, function and the underlying molecular mechanisms of the S100 family, as well as guidance for diagnosis, treatment and prognosis of digestive tract cancer. Systematic review of the roles and underlying molecular mechanisms of S100 protein family may provide new insight into exploring potential cancer biomarkers and the optimized therapeutic strategies for digestive tract cancer.


Assuntos
Biomarcadores Tumorais , Transição Epitelial-Mesenquimal , Proteínas S100 , Humanos , Proteínas S100/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/imunologia , Prognóstico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Neovascularização Patológica/metabolismo
7.
Angew Chem Int Ed Engl ; : e202402840, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509835

RESUMO

The doped organic hole transport layer (HTL) is crucial for achieving high-efficiency perovskite solar cells (PSCs). However, the traditional doping strategy undergoes a time-consuming and environment-dependent oxidation process, which hinders the technology upgrades and commercialization of PSCs. Here, we reported a new strategy by introducing a cascade reaction in traditional doped Spiro-OMeTAD, which can simultaneously achieve rapid oxidation and overcome the erosion of perovskite by 4-tert-butylpyridine (tBP) in organic HTL. The ideal dopant iodobenzene diacetate was utilized as the initiator that can react with Spiro to generate Spiro⋅+ radicals quickly and efficiently without the participation of ambient air, with the byproduct of iodobenzene (DB). Then, the DB can coordinate with tBP through a halogen bond to form a tBP-DB complex, minimizing the sustained erosion from tBP to perovskite. Based on the above cascade reaction, the resulting Spiro-based PSCs have a champion PCE of 25.76 % (certificated of 25.38 %). This new oxidation process of HTL is less environment-dependent and produces PSCs with higher reproducibility. Moreover, the PTAA-based PSCs obtain a PCE of 23.76 %, demonstrating the excellent applicability of this doping strategy on organic HTL.

8.
Chem Commun (Camb) ; 60(31): 4222-4225, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38525969

RESUMO

A N2-bridged tetranuclear Sc(III)-Ni(0) complex featuring a Ni → Sc interaction and a 4-membered [Sc-N-C-Ni] ring was synthesized and characterized. Bimetallic reactivity was demonstrated via reactions with a series of unsaturated compounds containing NC, CN, CC, CO and NN bonds.

9.
Exp Ther Med ; 27(5): 182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515646

RESUMO

Human induced pluripotent stem cells (hiPSCs) have been regarded as a potential stem cell source for cell therapy. However, the production of cells with mesenchymal potential from hiPSCs through spontaneous differentiation is time consuming and laborious. In the present study, the combined use of the GSK-3 inhibitor CHIR99021 and TGF-ß was used to obtain mesenchymal stem cell (MSC)-like cells from hiPSCs. During the induction process, the transcription of epithelial-mesenchymal transition (EMT)-related genes N-cadherin and Vimentin in the transformed cells was upregulated, whereas the transcription of E-cadherin and pluripotency-related transcription factors SOX2, OCT4 and NANOG did not change significantly. This indicated that whilst cells were pluripotent, EMT was initiated by the upregulation of transcription of EMT promoting genes. Both SMAD-dependent and independent signalling pathways were significantly activated by the combined induction treatment compared with the single factor induction. The hiPSC-derived MSC-like cells (hiPSC-MSCs) expressed MSC-related markers and acquired osteogenic, chondrogenic and adipogenic differentiation potentials. After being injected into the peritoneal cavity of rats, the hiPSC-MSCs secreted angiogenic and immune-regulatory factors and remained on the colicomentum for 3 weeks. Within an 11-week period, four intraperitoneal hiPSC-MSC injections (1x107 cells/injection) into acute myocardial infarction (AMI) model rats significantly increased the left ventricular ejection fraction, left ventricular fractional shortening and angiogenesis and significantly reduced scar size and the extent of apoptosis in the infarcted area compared with that of the control PBS injection. Symptoms of hiPSC-MSC-induced immune reaction or tumour formation were not observed over the course of the experiment in the hiSPC-MSC treated rats. In conclusion, the CHIR99021 and TGF-ß combined induction was a rapid and effective method to obtain MSC-like cells from hiPSCs and multiple high dose intraperitoneal injections of hiPSC-derived MSCs were safe and effective at restoring cardiac function in an AMI rat model.

10.
Nanoscale ; 16(13): 6669-6679, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38483277

RESUMO

Perovskite p-n homojunctions (PHJ) have been confirmed to play a crucial role in facilitating carrier separation/extraction in the perovskite absorption layer and provide an additional built-in potential, which benefits the inhibition of carrier recombination in perovskite solar cells (PSCs) and ultimately improves device performance. However, the diffusion and migration of ions between n-type and p-type perovskite films, particularly under operational and heating conditions, lead to the degradation of PHJ structures and limit the long-term stability of PSCs with PHJ structure (denoted as PHJ-PSCs). In this study, we propose an insert layer strategy by directly introducing an ultra-thin polyetheramine (PEA) layer between the n-type and p-type perovskite films to address those challenges arising from ion movements. Femtosecond transient absorption (fs-TAS) and photoluminescence (PL) measurements demonstrate that the PHJ (without and with the insert layer) enhances carrier separation/extraction compared to the single n-type perovskite film. Monitoring the evolution of bromine element distribution reveals that the insert layer can efficiently suppress ion diffusion between perovskite films, even under long-term illumination and heating conditions. Consequently, an efficiency of 23.53% with excellent long-term operational stability is achieved in the optimized PHJ-PSC with the insert layer.

11.
J Comput Chem ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485224

RESUMO

This study employs grand canonical Monte Carlo (GCMC) simulations to investigate the impact of functional group modifications (CH3 , OH, NH2 , and OLi) on the adsorption performance of CH4 /N2 on Ni-MOF-74. The results revealed that functional group modifications significantly increased the adsorption capacity of Ni-MOF-74 for both CH4 and N2 . The packed methyl groups in CH3 -Ni-MOF-74 create an environment conducive to CH4 , leading to the highest CH4 adsorption capacity. The electrostatic potential distribution indicates that the strong electron-donating effect introduced by the alkali metal Li results in the highest electrostatic potential gradient in Li-O-Ni-MOF-74, leading to the strongest adsorption of N2 , this is unfavorable for CH4 /N2 separation. At 1500 kPa the selectivity order of adsorbents for mixed gases was as follows: CH3 -Ni-MOF-74 > NH2 -Ni-MOF-74 > OH-Ni-MOF-74 > Ni-MOF-74 > Li-O-Ni-MOF-74. This study highlights that CH3 -Ni-MOF-74 possesses optimal CH4 selectivity and adsorption performance. Given the current lack of research on functionalized MOF-74 for the separation of CH4 and N2 , the findings of this study will serve as a theoretical guide and provide references for the applications of CH4 adsorption and CH4 /N2 separation.

12.
Small ; : e2400961, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534173

RESUMO

Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.

13.
Chem Commun (Camb) ; 60(23): 3150-3153, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38407840

RESUMO

A silver-catalyzed phosphonation of 2-aryloxazolines has been accomplished. This protocol provides highly regioselective access to para-phosphonation products with good functional group tolerance and moderate to good yields via cross-dehydrogenation coupling. Mechanistic studies have shown that para-phosphonation products are obtained via a radical pathway. Furthermore, the directing oxazoline group in the para-phosphonation products is removable and can be converted to benzoic esters.

14.
Adv Mater ; 36(16): e2310710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327155

RESUMO

Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4-chloro-3-sulfamoylbenzoic acid (CSBA), and its preferred arrangement is systematically investigated. It is elucidated that the CSBA molecular is prone to be orientationally absorbed on TiO2 surface through COOH-Ti, and then connect with perovskite through S═O-Pb, resulting in a feasible oriented molecular bridge. Contributing to the passivated interfacial defects, optimized interfacial energy level, and released perovskite tensile stress, resulting from the oriented CSBA molecular bridge, the PSCs with an active area of 0.08 cm2 achieve a certified power conversion efficiency (PCE) of 25.32%, the highest among the TiO2-based planar PSCs. Encouragingly, the PSCs with an active area of 1 cm2 achieve a champion PCE of 24.20%, significantly promoting the efficiency progress of large-area PSCs. In addition, the PSCs with oriented CSBA molecular bridge possess enhanced stability, the unencapsulated PSCs can maintain ≈91% and ≈85% of their initial PCE after 3000 h aging under ambient condition and 1200 h aging under exposure to UV irradiation.

15.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334144

RESUMO

Boron nitride quantum dots (BNQDs) have emerged as promising photocatalysts due to their excellent physicochemical properties. This study investigates strategies to enhance the photocatalytic performance of BNQDs through sulfur-doping (S-BNQDs) and edge-functionalization with ligands (urea, thiourea, p-phenyl-enediamine (PPD)). To analyze the geometry, electronic structure, optical absorption, charge transfer, and photocatalytic parameters of pristine and functionalized S-BNQDs, we performed density functional theory calculations. The results showed that S-doping and ligand functionalization tune the bandgap, band energies, and introduce mid-gap states to facilitate light absorption, charge separation, and optimized energetics for photocatalytic redox reactions. Notably, the PPD ligand induced the most substantial bandgap narrowing and absorption edge red-shift by over 1 electron volt (eV) compared to pristine S-BNQD, significantly expanding light harvesting. Additionally, urea and PPD functionalization increased the charge transfer length by up to 2.5 times, effectively reducing recombination. On the other hand, thiourea functionalization yielded the most favorable electron injection energetics. The energy conversion efficiency followed the order: PPD (15.0%) > thiourea (12.0%) > urea (11.0%) > pristine (10.0%). Moreover, urea functionalization maximized the first-order hyperpolarizability, enhancing light absorption. These findings provide valuable insights into tailoring S-BNQDs through strategic doping and functionalization to develop highly efficient, customized photocatalysts for sustainable applications.

16.
Entropy (Basel) ; 26(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392363

RESUMO

Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence (CE) theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of CE. It focuses on two primary challenges: quantifying CE and identifying it from data. The latter task requires the integration of machine learning and neural network techniques, establishing a significant link between causal emergence and machine learning. We highlight two problem categories: CE with machine learning and CE for machine learning, both of which emphasize the crucial role of effective information (EI) as a measure of causal emergence. The final section of this review explores potential applications and provides insights into future perspectives.

17.
BMC Surg ; 24(1): 59, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365668

RESUMO

OBJECTIVE: To identify the predictors for the achievement of minimal clinically important difference (MCID) in functional status among elderly patients with degenerative lumbar spinal stenosis (DLSS) undergoing lumbar decompression and fusion surgery. METHODS: Patients who underwent lumbar surgery for DLSS and had a minimum of 1-year follow-up were included. The MCID achievement threshold for the Oswestry Disability Index (ODI) was set at 12.8. General patient information and the morphology of lumbar paraspinal muscles were evaluated using comparative analysis to identify influencing factors. Multiple regression models were employed to identify predictors associated with MCID achievement. A receiver operating characteristic (ROC) curve analysis was conducted to determine the optimal cut-off values for predicting functional recovery. RESULTS: A total of 126 patients (46 males, 80 females; mean age 73.0 ± 5.9 years) were included. The overall rate of MCID achievement was 74.6%. Patients who achieved MCID had significantly higher psoas major muscle attenuation (43.55 vs. 39.23, p < 0.001) and preoperative ODI (51.5 vs. 41.6, p < 0.001). Logistic regression showed that elevated psoas major muscle attenuation (p = 0.001) and high preoperative ODI scores (p = 0.001) were independent MCID predictors. The optimal cut-off values for predicting MCID achievement were found to be 40.46 Hounsfield Units for psoas major muscle attenuation and 48.14% for preoperative ODI. CONCLUSION: Preoperative psoas major muscle attenuation and preoperative ODI were reliable predictors of achieving MCID in geriatric patients undergoing lumbar decompression and fusion surgery. These findings offer valuable insights for predicting surgical outcomes and guiding clinical decision-making in elderly patients.


Assuntos
Fusão Vertebral , Estenose Espinal , Masculino , Feminino , Humanos , Idoso , Resultado do Tratamento , Estenose Espinal/cirurgia , Diferença Mínima Clinicamente Importante , Estado Funcional , Descompressão , Vértebras Lombares/cirurgia , Estudos Retrospectivos
18.
Spine J ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38360179

RESUMO

BACKGROUND CONTEXT: While MRI image features and inflammatory biomarkers are frequently used for guiding treatment decisions in patients with lumbar disc herniation (LDH) and low back pain (LBP), our understanding of the connections between these features and LBP remains incomplete. There is a growing interest in the potential significance of MRI image features and inflammatory biomarkers, both for quantification and as emerging therapeutic tools for LBP. PURPOSE: To investigate the evidence supporting MRI image features and inflammatory biomarkers as predictors of LBP and to determine their relationship with pain intensity. STUDY DESIGN: Prospective cohort study. PATIENT SAMPLE: All consecutive patients with LDH who underwent discectomy surgery at our institution from February 2020 to June 2023 at the author's institution were included. OUTCOME MEASURES: MRI image features in discogenic, osseous, facetogenic, and paraspinal muscles, as well as inflammatory biomarkers in serum (including CRP (C-reactive protein), ESR (erythrocyte sedimentation rate), PCT (procalcitonin), TNF (tumor necrosis factor), interleukin-1 beta (IL-1ß), and IL-6), and paraspinal muscles (including TNF, IL-1ß, IL-6, IL-10, and transforming growth factor beta 1 (TGF-ß1)). METHODS: A series of continuous patients diagnosed with LDH were categorized into acute LBP (<12 weeks), chronic LBP (≥12 weeks), and non-LBP groups. MRI image features and inflammatory biomarkers relation to pain intensity was assessed using the independent t-test, Chi-squared tests, Spearman rank correlation coefficient, and logistic regression test. RESULTS: Compared to the non-LBP group, the chronic LBP group exhibited a higher incidence of intervertebral disc (IVD) degeneration (≥ grade 3) and high-fat infiltration in paraspinal muscles, alongside a significant reduction in the cross-sectional area (CSA) and fatty degeneration of the multifidus muscle. Furthermore, there was a greater expression of IL-6 in serum and TNF in paraspinal muscles in the chronic LBP group and a greater expression of CRP and IL-6 in serum and TNF in paraspinal muscles in the acute LBP group. CSA and fatty degeneration of multifidus muscle were moderately negatively correlated with chronic LBP scores. The expression of TNF and IL-6 in serum and the expression of TNF in the multifidus muscle were moderately correlated with preoperative LBP. IVD degeneration and high-fat infiltration were identified as risk factors for chronic LBP. CONCLUSION: The results provide evidence that IVD degeneration, high-fat infiltration, and the reduction of CSA in paraspinal muscles were associated with the development of chronic LBP in patients with LDH, and these associations are linked to inflammatory regulation. This deepens our understanding of the etiology and pathophysiology of LBP, potentially leading to improved patient stratification and more targeted interventions.

19.
Nat Med ; 30(3): 749-761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287168

RESUMO

Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteômica , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Estudos Prospectivos
20.
mBio ; 15(2): e0207323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38179948

RESUMO

Tuberculosis (TB) is a significant global public health threat. Despite the long-standing use of para-aminosalicylic acid (PAS) as a second-line anti-TB drug, its resistance mechanism remains unclear. In this study, we isolated 90 mutants of PAS-resistant Mycobacterium tuberculosis (MTB) H37Ra in 7H11 solid medium and performed whole-genome sequencing, gene overexpression, transcription level comparison and amino acid level determination in MTB, and promoter activity by ß-galactosidase assays in Mycobacterium smegmatis to elucidate the mechanism of PAS resistance. Herein, we found that 47 of 90 (52.2%) PAS-resistant mutants had nine different mutations in the intergenic region of metM (Rv3253c) and Rv3254. Beta-galactosidase assays confirmed that mutations increased promoter activity only for metM but not Rv3254. Interestingly, overexpression of MetM or its M. smegmatis homolog (MSMEI_1796) either by its promoter in metM's direction or by exogenous expression in MTB induced PAS resistance in a methionine-dependent manner. Therefore, drug susceptibility results for the metM promoter mutants can be misleading when using standard 7H10 or 7H9 medium, which lacks methionine. At the metabolism level, PAS treatment led to higher intracellular methionine levels in the mutants than the wild type, antagonizing PAS and conferring resistance. Furthermore, 12 different mutations in the metM promoter were identified in clinical MTB strains. In summary, we found a novel mechanism of PAS resistance in MTB. Mutations in the metM (Rv3253c) promoter upregulate metM transcription and elevate intracellular methionine, which antagonize PAS. Our findings shed new light on the mechanism of PAS resistance in MTB and highlight issues with the current PAS susceptibility culture medium.IMPORTANCEAlthough para-aminosalicylic acid (PAS) has been used to treat TB for more than 70 years, the understanding of PAS resistance mechanisms is still vague, living gaps in our ability to predict resistance and apply PAS effectively in clinical practice. This study aimed to address this knowledge gap by inducing in vitro PAS resistance in Mycobacterium tuberculosis (MTB) using 7H11 medium and discovering a new PAS resistance mechanism. Our research revealed that spontaneous mutations occurring in the promoter region of the methionine transporting gene, metM, can upregulate the expression of metM, resulting in increased intracellular transport of methionine and consequently high-level resistance of Mycobacterium tuberculosis to PAS. Notably, this resistance phenotype cannot be observed when using the commonly recommended 7H10 medium, possibly due to the lack of additional methionine supply compared with that when using the 7H11 medium. Mutations on the regulatory region of metM were also found in some clinical MTB strains. These findings may have important implications for the unexplained PAS resistance observed in clinical settings and provide insight into the failures of PAS treatment. Additionally, they underscore the importance of considering the choice of culture media when conducting drug susceptibility testing for MTB.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Ácido Aminossalicílico/farmacologia , Ácido Aminossalicílico/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Antituberculosos/farmacologia , Mutação , Metionina/metabolismo , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...